Skip to main content
xआप एक स्वतंत्र और सवाल पूछने वाले मीडिया के हक़दार हैं। हमें आप जैसे पाठक चाहिए। स्वतंत्र और बेबाक मीडिया का समर्थन करें।

आर्टिफ़िशियल इंटेलीजेंस के ज़रिये हुई बीमारी से जुड़े जीन की पहचान

''हमने पहली बार 'डीप लर्निंग' तकनीक का इस्तेमाल बीमारियों से संबंधित जीन की पहचान के लिए किया है। यह बड़ी मात्रा की जानकारी के विश्लेषण के लिए शानदार तरीक़ा है।"
Artificial Intelligence Used to Find Disease-related Genes
Image Courtesy: entrepreneur.com

आर्टफिशियल इंटेलीजेंस का इस्तेमाल अब बॉयोलॉजिकल रिसर्च में हो रहा है। रिसर्चर इसके ज़रिए बड़ी मात्रा के जीन डाटा (गुणसूत्र आकंड़ों) पैटर्न को दिखाने और कई प्रकार की बीमारियों से जुड़े जीन समूहों की खोज के लिए कर रहे हैं। नेचर में इससे संबंधित एक पेपर प्रकाशित हुआ है।

सोशल मीडिया प्लेटफॉर्म पर हमें साइट की तरफ़ से कुछ नए दोस्त बनाने के लिए नाम सुझाए जाते हैं। इन सुझावों (फ्रेंड्स सजेशन) का चुनाव संबंधित व्यक्ति से हमारे साझा दोस्तों की संख्या के हिसाब से होता है। इसी तरह वैज्ञानिकों ने बॉयोलॉजिकल नेटवर्क मैप बनाने की कोशिश की है। इसका आधार कई प्रकार के प्रोटीन और जीन्स का आपसी व्यवहार है। रिसर्चर ने इसके लिए ''आर्टिफ़िशियल न्यूरल नेटवर्क'' का इस्तेमाल किया। इन आर्टिफ़िशियल नेटवर्क की प्रायोगिक आंकड़ों के साथ प्रोग्रामिंग की गई।

मतलब, नेटवर्क में ऐसी प्रोग्रामिंग की गई, जिसके ज़रिये, ''प्रयोगों से हासिल होने वाले नतीजों'' की तरह के परिणाम पाए जा सकते हैं। जब इस तरह के नेटवर्क में डाटा डाला जाता है, तो यह उसे विश्लेषित कर बताता है कि डाटा से क्या समझा जा सकता है। जटिल आंकड़ों के विश्लेषण में आर्टिफिशियल न्यूरल नेटवर्क का शानदार काम रहा है। इसलिए इनका इस्तेमाल इमेज रिक्गनिशन (तस्वीर से पहचान) एप्लीकेशन में भी किया जाता है। लेकिन बॉयोलॉजिकल रिसर्च में फिलहाल इनका उपयोग सीमित है।

लिंकोपिंग यूनिवर्सिटी के फ़िज़िक्स, केमिस्ट्री एंड बॉयोलॉजी (IFM) में पोस्टडॉक्टोरल फैलो संजीव द्विवेदी कहते हैं, ''हमने पहली बार 'डीप लर्निंग' तकनीक का इस्तेमाल बीमारियों से संबंधित जीन की पहचान के लिए किया है। यह बड़ी मात्रा की जानकारी के विश्लेषण के लिए शानदार तरीक़ा है।'' संजीव इस पेपर के पहले लेखक भी हैं। 

लेकिन इससे जुड़ी एक बड़ी चुनौती भी है। पूरी प्रक्रिया में आर्टिफिशियल न्यूरल नेटवर्क कैसे किसी काम को पूरा करता है, इसे देख पाना मुमकिन नहीं है। यह एक ब्लैक बॉक्स की तरह है। संजीव ने आगे कहा, ''हम जानते हैं कि हमने कौन से आंकड़े डाले हैं और हमें नतीजे भी दिखते हैं। लेकिन इन नतीजों तक पहुंचने के लिए नेटवर्क ने कौन से क़दम उठाएँ, यह देख पाना हमारे लिए मुमकिन नहीं है। मौजूदा अध्ययन के रिसर्चर ने भी इस प्रक्रिया को समझने की कोशिश की है।''

IFM में सीनियर लेक्चरर और अध्ययन के करस्पोंडिंग लेखिका माइका गुस्ताफसन कहती हैं, ''जब हमने अपने न्यूरल नेटवर्क की जांच की, तो पाया कि पहली गुप्त परत में ज़्यादातर अलग-अलग प्रोटीन का आपसी व्यवहार संपन्न होता है। मॉडल की गहराई में तीसरे स्तर पर हमें अलग-अलग कोशिका समूह मिले। बॉयोलॉजिकल तौर पर अहम इस ग्रुपिंग का अपने-आप बनना बेहद दिलचस्प है। जबकि हमारे नेटवर्क में जीन से संबंधित जो आंकड़े डाले गए थे, वो अवर्गीकृत थे।''

इसके बाद रिसर्चर यह जानने का प्रयास किया कि जीन मॉडल, अलग-अलग जीन के बीमारियों से संबंध को ढूंढ पाने में कामयाब है या नहीं। उनका मॉडल सही साबित हुआ। मॉडल जरूरी पैटर्न को समझने में कामयाब रहा, जो बॉयोलॉजिकल सच्चाई से वास्ता रखते हैं।

माइक गुस्ताफसन आगे कहती हैं, ''हमें लगता है कि इस मामले में असली हासिल न्यूरल नेटवर्क को समझ पाना है। इससे हमें बॉयोलॉजिकल पृष्ठभूमियों के बारे में बहुत सारी नई बातें पता चल सकेंगी। हमें यह भी लगता है कि हमारी अपनाई प्रक्रियाओं से वह मॉडल बनता है जिसका आसानी से सामान्यीकरण हो सकता है और जिसे कई तरह की बॉयोलॉजिकल जानकारी के लिए इस्तेमाल किया जा सकता है।''

रिसर्चर का विश्वास है कि जीन पैटर्न पहचानने में AI के सफल इस्तेमाल से भविष्य में ''प्रेसिज़न मेडिसिन (सूक्ष्म पहुंच वाली दवाईयां)'' के विकास में मदद मिलेगी।

अंग्रेजी में लिखा मूल आलेख आप नीचे दिए गए लिंक पर क्लिक कर पढ़ सकते हैं।

Artificial Intelligence Used to Find Disease-related Genes

अपने टेलीग्राम ऐप पर जनवादी नज़रिये से ताज़ा ख़बरें, समसामयिक मामलों की चर्चा और विश्लेषण, प्रतिरोध, आंदोलन और अन्य विश्लेषणात्मक वीडियो प्राप्त करें। न्यूज़क्लिक के टेलीग्राम चैनल की सदस्यता लें और हमारी वेबसाइट पर प्रकाशित हर न्यूज़ स्टोरी का रीयल-टाइम अपडेट प्राप्त करें।

टेलीग्राम पर न्यूज़क्लिक को सब्सक्राइब करें

Latest